CategoricalBinarizer¶
- 
class paralytics.preprocessing.CategoricalBinarizer(keywords_true=None, keywords_false=None)[source]¶
- Bases: - sklearn.base.BaseEstimator,- sklearn.base.TransformerMixin- Finds categorical columns with binary-like response and converts them. - Searches throughout the categorical columns in the DataFrame and finds those which contain categories corresponding to the passed boolean values only. - Parameters
- keywords_{true, false}: list, optional (default=None)
- List of categories’ names corresponding to {True, False} logical values. 
 
- Attributes
- columns_binarylike_: list
- List of column names that should be mapped to boolean. 
 
 - Methods Summary - fit(self, X[, y])- Fits selection of binary-like columns. - transform(self, X)- Applies boolean convertion to binary-like category columns. - Methods Documentation - 
fit(self, X, y=None)[source]¶
- Fits selection of binary-like columns. - Parameters
- X: pd.DataFrame, shape = (n_samples, n_features)
- Data with n_samples as its number of samples and n_features as its number of features. 
- y: ignore
 
- Returns
- self: object
- Returns the instance itself. 
 
 
 - 
transform(self, X)[source]¶
- Applies boolean convertion to binary-like category columns. - X columns that match the condition of containing only binary-like string values are mapped to boolean values corresponding to the passed strings expected to be interpreted as binary response. - Parameters
- X: pd.DataFrame, shape = (n_samples, n_features)
- Data with n_samples as its number of samples and n_features as its number of features. 
 
- Returns
- X_new: pd.DataFrame, shape = (n_samples, n_features)
- X data with substituted binary-like category columns with its corresponding binary values.