ColumnProjector¶
- 
class paralytics.preprocessing.ColumnProjector(manual_projection=None, num_to_float=True)[source]¶
- Bases: - sklearn.base.BaseEstimator,- sklearn.base.TransformerMixin- Projects variable types onto basic dtypes. - If not specified projects numeric features onto float, boolean onto bool and categorical onto ‘category’ dtypes. - Parameters
- manual_projection: dictionary, optional (default=None)
- Dictionary where keys are dtype names onto which specified columns will be projected and values are lists containing names of variables to be projected onto given dtype. Example usage: - >>> manual_projection = { >>> float: ['foo', 'bar'], >>> 'category': ['baz'], >>> int: ['qux'], >>> bool: ['quux'] >>> } 
- num_to_float: boolean, optional (default=True)
- Specifies whether numerical variables should be projected onto float (if True) or onto int (if False). 
 
- Attributes
- automatic_projection_: dict
- Dictionary where key is the dtype name onto which specified columns will be projected chosen automatically (when manual_projection is specified then this manual assignment is decisive). 
 
 - Methods Summary - fit(self, X[, y])- Fits corresponding dtypes to X. - transform(self, X)- Apply variable projection on X. - Methods Documentation