Imputer¶
- 
class paralytics.preprocessing.Imputer(columns=None, numerical_method='mean', categorical_method='mode')[source]¶
- Bases: - sklearn.base.BaseEstimator,- sklearn.base.TransformerMixin- Imputes missing values of the dataframe. - Imputes missing values with the method adjusted based on the column type. For numerical columns imputes missings with the value calculated based on the numerical_method. For categorical methods imputes missings with the most frequent value in the column. - Parameters
- columns: list, optional (default=None)
- Defines columns which missings will be imputed. If not specified imputes all of the dataframe columns. - numerical_method: string {mean, median}, optional (default=’mean’)
- Method that will be applied to impute numerical columns. Accepts all of the pd.DataFrame methods returning some statistic. 
- categorical_method: string {mode}, optional (default=’mode’)
- Method that will be applied to impute categorical columns. Accepts all of the pd.DataFrame methods returning some statistic. 
 
 
- Attributes
- imputing_dict_: dict, length = n_features
- Dictionary of values to be imputed in place of NaN’s. The key is the column name and the value is the value to impute for NaN in the corresponding column. 
 
 - Methods Summary - fit(self, X[, y])- Fits corresponding imputation values to the X columns. - transform(self, X)- Applies missing values imputation to X. - Methods Documentation - 
fit(self, X, y=None)[source]¶
- Fits corresponding imputation values to the X columns. - Parameters
- X: DataFrame, shape = (n_samples, n_features)
- Training data with missing values. 
- y: ignore
 
- Returns
- self: object
- Returns the instance itself. 
 
 
 - 
transform(self, X)[source]¶
- Applies missing values imputation to X. - Parameters
- X: DataFrame, shape = (n_samples, n_features)
- New data with n_samples as its number of samples. 
 
- Returns
- X_new: DataFrame, shape = (n_samples, n_features)
- X data with substituted missing values to their respective imputation values from imputing_dict_.